Developmental regulation and evolution of scaling: novel insights through the study of *Onthophagus* beetles

Sofia Casasa, Daniel B Schwab and Armin P Moczek

Scaling relationships play critical roles in defining biological shape, trait functionality, and species characteristics, yet the developmental basis of scaling and its evolution remain poorly resolved in most taxa. In the horned beetle genus *Onthophagus*, scaling relationships of most traits are largely comparable across many species, however, the morphology and scaling of horns, a recent evolutionary invention, has diversified dramatically, ranging from modestly to highly positively linear to more complex sigmoidal allometries. Through a series of transcriptomic screens and gene function assays, the *doublesex*, *hedgehog*, *insulin*, and *serotonin* signaling pathways have recently been implicated in the regulation of amplitude, slope, and threshold location of the highly sigmoidal horn allometry in *O. taurus*. These and other findings suggest that co-option of these pathways into the regulation of horn development may have been critical in the evolutionary transitions from isometric to positively allometric to sigmoidal allometries in *Onthophagus*, thereby contributing to the extraordinary diversification of one of the most species-rich genera in the animal kingdom.

Address
Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, United States

Corresponding author: Casasa, Sofia (ascasasa@indiana.edu)

Current Opinion in Insect Science 2017, 19:52–60
This review comes from a themed issue on Development and regulation
Edited by Haruhiro Fujiwara and Yoshinori Tomoyasu

http://dx.doi.org/10.1016/j.cois.2016.11.004
2214-5745/© 2016 Published by Elsevier Inc.

Introduction
The study of scaling relationships marks a focal point at the intersection of several fundamental research programs in evolutionary developmental biology and allied fields. At the most basic level, scaling relationships, or allometries, are the product of differential growth of parts relative to each other, and as such the study of allometry is fundamental to our understanding of the biology of shape, how it is achieved and modified in development, and how it is transformed in evolution [1]. At the same time, scaling relationships are highly dependent on biological context, and as such their study can provide a window into the biology of said contexts. For instance, in most sexually reproducing organisms sexual dimorphism is the leading source of intraspecific variation, brought about to a significant degree through sex-specific changes in the scaling of otherwise homologous body parts [2]. Similarly, environmental conditions such as nutrition, crowding, or season commonly impact how much developing organisms invest into specific structures, enabling adaptive changes in shape and scaling as a function of environmental conditions [3–5]. Investigating the developmental regulation of scaling relationships and its evolution can therefore inform multiple research programs at once, from the developmental evolution of biological shape in general to developmental origins and evolutionary diversification of sexual dimorphisms and developmental plasticity.

Insects have featured prominently in the study of allometry by combining a diversity of transformational modes with overall easily measured external morphology, experimental manipulability, and ecological relevance. In particular, early studies focused on the hormonal regulation of metamorphosis provided many critical insights into the developmental mechanisms that impact growth and relative size, and the evolutionary biases these mechanisms may exert [6]. The advent of affordable next generation sequencing methods, coupled with the increasing availability of gene function assays such as RNA interference, is now allowing the field to move beyond these more traditional foci and explore pathways, processes, or developmental interactions that until recently have not been studied in the context of scaling and allometry evolution. In this article we briefly review current efforts to employ such approaches in the horned beetle genus *Onthophagus* to further advance our understanding of the developmental basis of scaling relationships and their evolution across important biological contexts.

Biology and allometry in *Onthophagus*
The genus *Onthophagus* is among the most speciose genera of animals, encompassing over 2000 described species [7]. All *Onthophagus* are dung beetles in the narrow sense, i.e. rely on the dung of mostly herbivorous mammals as a food source for both larvae and adults. Natural populations of adult *Onthophagus* beetles typically consist of
individuals spanning a wide range of body sizes, reflecting the diversity of resource environments experienced by larvae and providing easy opportunities to study the interplay between nutritional variation and scaling relationships across traits, sexes, populations, and species [8]. Moreover, *Onthophagus* possess a diversity of traits that make them especially attractive models for the study of scaling, most notably horns, single or paired structures projecting from the head and/or thorax and used primarily in male combat over access to females (Figure 1a). *Onthophagus* horns constitute an evolutionary novelty even by the strictest definition [9], and commonly display pronounced and sometimes extreme nutrition-dependent plasticity, in contrast to the more isometric growth typical of mouthparts, wings and legs, or the hypo-allometric growth of genitalia (Figure 1b). Further, while scaling relationships of non-horn traits are largely comparable across species, those of horns have diversified dramatically among *Onthophagus* populations (Figure 1c) and species (Figure 1d), ranging from modestly to highly positively allometric to polyphenic, where male morphologies are separated into a minor nearly hornless sneaker morph and a major fully horned fighter morph by a sharp body size threshold [8,10]. Lastly, at least one increasingly well-studied species is available in which males have secondarily lost nutrition-responsive horn growth while females have independently gained both conspicuous head- and thoracic horns, resulting in a rare reversed sexual dimorphism [11]. Collectively, this striking intra- and interspecific diversity in scaling relationships over a range of phylogenetic distances offers interesting opportunities to explore the developmental regulation of relative growth, and to begin integrating the micro- and macro-evolution of scaling.

The developmental evolution of thresholds: lessons from the sex determination and Hedgehog pathways

Many *Onthophagus* species are polyphenic, characterized by alternate male morphs so strikingly different that several were originally described as separate species [12]. Horn polyphenisms rely on a sharp body size threshold separating male larvae along one of two alternate, discrete developmental pathways. However, the development means by which such thresholds are specified and executed remain largely unclear, with early studies into the roles of juvenile hormones and ecdysteroids providing at best partial, and highly debated, insights [13,14]. Starting in 2009, a series of transcriptomic screens in *O. taurus* [15,16] began to document consistent and surprising differences in the expression levels of a transcription factor–Doublesex (Dsx)—across male body regions as well as nutritional states, suggesting that fold changes in *dsx* expression may somehow be related to the
relative degree of nutrition-dependent trait exaggeration. Up to this point, \(dsx \) was well studied as a key member of the insect sex determination pathway, in the context of which it is alternatively spliced to encode male- and female-specific splice variants, which in turn are thought to regulate the sex-biased expression of target genes underlying sexually dimorphic traits [17,18]. While originally assumed to be expressed in all cells, seminal work in \(Drosophila \) showed that flies, and likely insects in general, are in fact mosaic for \(dsx \) expression: only a subset of cells acquire a \(dsx \)-mediated male or female identity during development, while the majority do not, suggesting that the spatial regulation of \(dsx \) is required for the elaboration of sex-specific structures [19–21]. Expression data in \(O. taurus \), however, began to suggest that \(dsx \) may also contribute to variation within sexes, possibly by modulating growth responses to variation in nutrition. Subsequent work in \(Onthophagus \) and other beetle systems has since confirmed this suspicion: for example, in \(O. taurus \) down-regulation of the male \(Dsx \) isofrom largely eliminates nutrition-responsive horn growth in males, while down-regulation of the female isofrom induces moderate nutrition-responsive growth of horns in females (Figure 2b) [22]. Similarly, sex-specific \(Dsx \) isoforms promote and inhibit the formation of head horns in males and females of the rhinoceros beetle \(Trypoxylus dichotomus \), respectively [23]. Unlike \(O. taurus \) males, male \(T. dichotomus \) are not polyphasic, but horn formation is similarly developmentally plastic, and cued primarily by larval nutrition [23]. Lastly, similar findings emerged from parallel studies on stag beetles (Lucanidae) famous for their nutrition-dependent elaboration of mandible length in males [24].

Taken together, these results suggest that the evolution of nutrition-dependent exaggeration of secondary sexual traits and the corresponding evolution of highly positive, hyper-allometric scaling relationships was made possible through the repeated and independent co-option of \(dsx \)-mediated growth regulation. At the same time it became clear, however, that \(dsx \) function in \(Onthophagus \) was insufficient to fully explain the development of a body size threshold and corresponding sigmoidal allometry: while \(dsx \) may account for the regulation of nutrition-responsive exaggeration, some other mechanism was needed to simultaneously inhibit trait induction in below-threshold individuals. Transcriptomic screens again began to point in a promising, albeit highly unexpected direction — the Hedgehog signaling pathway.

The Hedgehog (Hh) signaling pathway is a highly conserved cellular transduction pathway best understood for its role in patterning anterior/posterior (A/P) polarity in body segments and appendages [25,26]. Key members of this pathway include the Hedgehog protein (Hh) — a diffusible morphogen required for activating Hh signaling, Patched (ptc) — the cell membrane bound Hh receptor that inhibits Hh signaling unless bound to Hh protein, and Smoothened (smo) — a membrane protein.
that, in the absence of Hh protein, is constitutively inhibited by ptc, but disinhibited once ptc binds to Hh, thereby activating the intracellular components of the pathway. Several transcriptomic screens in O. taurus identified Hh pathway members as differentially expressed not just in different appendage types, but also — unexpectedly — in response to sex and different levels of nutrition [27*,28]. Subsequent functional analyses confirmed that Hh signaling indeed plays a critical role in the nutrition- and sex-dependent regulation of scaling relationships of a subset of traits, yet does so in a highly unusual and unexpected manner [29**]. Specifically, RNAi-mediated down-regulation of smo and thus inactivation of the pathway resulted in the development of full-sized horns in small, low-nutrition O. taurus males, thereby converting the strongly sigmoidal scaling relationship between body size and horn length typical of wildtype individuals into a linear allometry (Figure 2a). High-nutrition males, in contrast, were unaffected. Similar, though less extreme phenotypes were obtained via knock-down of hh itself, which is also predicted to inactivate the pathway. Conversely, ptcRNAs - which is predicted to constitutively activate the pathway even in the absence of hh, rendered both low and high-nutrition males essentially hornless [29**].

Corresponding results were obtained for pupal thoracic (pronotal) horns. Like all Onthophagus species studied so far, O. taurus pupae develop a horn on the pronotum, which aids in the shedding of the larval head capsule during the larval to pupal molt [30]. However, in a subset of species, including O. taurus, the pupal pronotial horn is fully resorbed prior to the adult molt via programmed cell death [31]. Unlike head horns, however, pupal thoracic horns scale linearly with body size and can be found in both sexes. Following smoRNAs, animals developed significantly longer thoracic horns relative to their body size compared to control-injected individuals, whereas ptcRNAs massively reduced or even eliminated thoracic horns in both sexes. At the same time, RNAi phenotypes observed elsewhere along the body axis were consistent with a conservation of pathway function in the context of patterning A/P polarity of segments and appendages, and double knock-downs confirmed conservation of the genetic relationships among pathway members [29**]. Collectively, these data thus suggest that just like the sex-determination pathway, Hh signaling has been co-opted into the regulation of horn development, has acquired nutrition sensitivity in the process, but exerts its function in a manner opposite yet complimentary to that of Dxs: by actively inhibiting horn formation in low-nutrition individuals.

Taken together, these findings now raise the possibility that a combination of Dxs-mediated promotion of horn growth under high-nutrition and Hh-mediated inhibition of horn growth under low nutrition may have played a critical role in the evolutionary transition from exaggerated linear to sigmoidal scaling relationships by establishing a critical size threshold. Once in place, such a threshold could then have enabled the development of discrete, nutritionally cued horned and hornless morphs, and by recruiting additional genes and pathways further facilitated the evolution of morph-specific behaviors and physiologies, thereby enabling the development of alternate phenotypes from the same genome. Intriguingly, while the role of Hh signaling in plastic or polyphenic development has so far only been documented in the context of horn morphologies, recent findings suggest that the role of Dxs may go well beyond the regulation of horns and also affect behavioral phenotypes, most notably aggression [Beckers and Moczek, unpublished data]. While these findings are beginning to hint at a master switch-like mechanism controlling and integrating suites of alternative morphological, behavioral and possibly physiological traits, clearly more work is needed in this area. A similarly exciting area for future study constitutes the nature of interactions between Dxs and Hh pathways. A first window into possible interactions has been provided by a recent genome-wide analysis of Dxs target genes in O. taurus, which found that several Hh pathway genes both change their expression following DxsRNAi and possess multiple high affinity Dxs binding sites in their promoters [21]. Perhaps most important, however, we need to learn where and how one or both pathways obtain information about the nutritional constitution of a given individual, a fundamental requirement for the establishment of a nutrition-sensitive threshold. Recent work on the insulin signaling pathway is beginning to provide some first insights.

Insulin signaling as a possible mediator between nutritional status and growth regulation

The insulin/IGF signaling (IIS) pathway is a conserved physiological mechanism well known for its role in mediating nutrition-dependent growth across taxa, and is especially well studied in Drosophila [32–35]. These and other studies established that insulin-like peptides (ILPs) are produced by insulin producing cells (IPC) in the brain in response to nutrient availability and then released directly into the haemolymph. Circulating ILPs then bind to the Insulin-like receptor (InR), which activates a phosphokinase signal transduction cascade that ultimately induces cell proliferation. Nutritional variation is thus transduced through development in part via the nutrition-dependent release of ILPs and the subsequent ILP-mediated regulation of organ- and body size [35,36].

The IIS pathway has also been implicated in mediating differential sensitivity to nutrition among different organs within an individual. For example, in Drosophila, growth of wings, palps and legs scales isometrically with body size in response to nutrition [37] while other body parts, such
as the central nervous system (CNS) and genitalia, are hypo-allometric [38–40]. Even though the mechanisms employed by the CNS and genitalia to render them insensitive to nutrition are different, they both ultimately rely on high levels of IIS activity, especially under low-nutrition conditions [40]. Specifically, the CNS achieves this by directly activating PI3-kinase (PI3 K), one of the components of the IIS pathway downstream of InR via the anaplastic lymphoma kinase, thereby ensuring high levels of IIS activity and cell proliferation regardless of nutritional status [38]. In contrast, genitalia exhibit low expression levels of the transcription factor Forkhead box, sub-group O (Foxo), a growth inhibitor downstream of InR and PI3K. This growth inhibitor is normally activated under nutrient stress, yet in genitalia constitutively low levels of foxo expression enable this organ to remain largely insensitive to nutritional status and to maintain a relatively constant size across a range of nutritional conditions and independent of final adult body size [39].

Conversely, pronounced and drastic changes in organ growth in response to variation in nutrition, such as those seen in exaggerated secondary sexual traits, have also been shown to be regulated by the IIS pathway. A recent study in the rhinoceros beetle, T. dichotomus [41], provided the first hint that differential expression of InR may enable diverse body regions to differ in their sensitivities to nutrition, thereby enabling disparate growth responses to the same nutritional gradient. Specifically, larval RNAi-mediated transcript depletion of T. dichotomus InR affected the nutritional responsiveness of horns much more severely than that of wings, whereas genitalia were least affected. These findings raised the possibility that IIS activity may enable differential sensitivity to nutritional variation, thereby allowing linear responses to the same nutritional gradient to be more or less severe. However, if and how the IIS pathway also enables non-linear growth responses, such as those underlying polyphenic development, is presently unclear. A first hint suggesting that IIS signaling may also play a major role in the regulation of polyphenisms comes from the planthopper Nilaparvata lugens. A recent study found that a duplication of InR, followed by functional divergence, was involved in mediating the production of long- versus short-winged morphs [42]. Duplications of InR are widespread across insects, however, their potential role in regulating alternative morphologies, particularly in the context of nutrition-responsive growth, is just beginning to be elucidated.

Recent and ongoing work in Onthophagus also implicates the IIS pathway in the regulation of nutrition-responsive growth, although the exact details appear to differ considerably when compared to findings in other taxa, or even from one Onthophagus species to another. A recent study in O. nigriventris, a species with a nutritionally cued male polyphenism involving a single and enormous thoracic horn, has shown that foxo plays only a modest role in regulating nutrition-responsive horn growth [43]. In contrast, nutrition-responsive development of paired head horns in O. taurus appears to be greatly influenced by foxo. Preliminary data in this species show that foxoRNAi results in a significant increase in horn length in small, low-nutrition males, but a modest decrease in horn length in larger, high-nutrition males, causing the resulting body size — horn length allometry to lose much of its sigmoidal nature (Figure 2c). These results raise the possibility that insulin signaling in O. taurus, though not O. nigriventris, may play an important role in regulating the steepness of the allometric transition between hornless and horned morphologies, i.e. the slope at the point of inflection of the sigmoidal allometry. Intriguingly, foxoRNAi phenotypes parallel at least in part those observed for dsxRNAi (under high nutrition) and smRNAi (under low nutrition), raising the possibility that dsx, or hh signaling, or both may be downstream targets of IIS. However, if and how the IIS pathway interacts with these and other pathways is presently unknown, and represents exciting opportunities for future research. Moreover, recent work on yet another pathway, the serotonin signaling pathway, suggest additional opportunities for studying the developmental regulation and possibly evolutionary diversification of body size thresholds.

Serotonin signaling as a determinant of threshold body size

The serotonin (5-HT) signaling pathway is an ancient and highly conserved feature of plant, fungal, and animal physiology [44]. Serotonin biosynthesis takes place within specialized (i.e. serotonergic) neurons located in the brain and ventral nerve cord of all insects and requires two steps, beginning with the hydroxylation of the essential amino acid tryptophan by tryptophan hydroxylase (TPH) to form 5-hydroxytryptophan (5-HTP), and followed by the decarboxylation of 5-HTP to 5-HT by tryptophan decarboxylase (TPD). Serotonin is released from serotonergic neurons into either the synaptic cleft as a neurotransmitter or neuromodulator, or secreted into general circulation as a neurohormone, before binding to one or more members of the three 5-HT receptor families (5-HTR1, 5-HTR2, and 5-HTR3) that are present in insects[45*].

Both in vertebrates and invertebrates, 5-HT has long been studied as a regulator of many key physiological processes and behaviors, including circadian rhythms, diuresis, learning and memory, as well as feeding behavior and social interactions [45*]. Yet, recent insights have begun to expand the role of 5-HT and other monoamines beyond these processes and into the regulation of growth, plasticity, and scaling relationships. For instance, the monoamine dopamine has been shown to regulate plasticity in the feeding arm length of sea urchin larvae in
response to food availability [46], and 5-HT mediates the shift from the solitarious to the gregarious morph of phase polyphenic locusts in response to high conspecific density [47]. In addition, 5-HT signaling can interact with IIS by suppressing the release of ILPs from the brain of Drosophila to negatively regulate adult body size and developmental timing [48].

Transcriptomic screens in Onthophagus are now providing the first hints of a possible role of 5-HT signaling in the regulation of horn growth and scaling. These efforts demonstrated not only that 5-HTR₁ is up-regulated exclusively in the horn tissue of major males [15], but also that this receptor, alongside other members of the 5-HT biosynthetic pathway (i.e. TPH and TPD), exhibits differential expression across developmental stages, sexes, and perhaps most importantly, across O. taurus populations that have diverged rapidly in the precise location of the body size threshold separating alternate male morphs [21,49, and Pespeni and Moczek, unpublished data]. In addition, recent genome-wide analysis of dsx target genes in O. taurus (see Section 3) found that 5-HTR₁ expression in male head horns is up-regulated by d sx, and that the 5-HTR₁ gene possesses several putative high affinity d sx binding sites in its promoter region [21]. Combined, these data implicate 5-HT signaling in the nutrition-responsive horn growth of O. taurus, and suggest a thus far undescribed interaction between d sx and 5-HT signaling.

Preliminary functional analyses are beginning to confirm a role for 5-HT in regulating the nutrition-responsive growth of head horns in O. taurus. Specifically, while pharmacologically increasing 5-HT biosynthesis via treatment with 5-HTP produces no effect on horn growth, pharmacologically decreasing 5-HT biosynthesis using α-methyltryptophan (AMTP), a competitive antagonist of TPH, shifts the threshold at which horns are produced to a substantially lower body size, while all other aspects of the allometry remain unaffected (Figure 2d). Intriguingly, the magnitude of this threshold shift is congruent with those observed among O. taurus populations (Figure 1c) [49], implicating variation in 5-HT signaling as a potential mechanism underlying rapid threshold evolution in nature. In contrast, even though other morphological features such as the wings and aedeagus begin their elaboration much earlier than horns, the scaling relationships of these and other traits are unaffected by both AMTP and 5-HTP, providing experimental validation of expression data suggesting that the development of horns alone is sensitive to 5-HT signaling.

These manipulations have since been replicated in two additional species of Onthophagus: O. sagittarius, a species that has secondarily lost male horn polyphenism and now generate horns that scale linearly with body size in both sexes, and O. gazella, a primitively polyphenic species that is basal in the Onthophagus phylogeny. In O. sagittarius, neither AMTP nor 5-HTP treatment has any effect on the horn allometry of males and females, whereas the effect of these treatments on O. taurus is largely replicated in O. gazella. These preliminary results suggest (i) that 5-HT signaling was co-opted early in Onthophagus evolution, (ii) that 5-HT function may be limited to setting the location of the body size threshold, and (iii) that, in the absence of a threshold to set, 5-HT has no effect on the nutrition-dependence of horn growth.

Summary and future directions

Onthophagus horned beetles combine rich morphological diversity within and among species with experimental accessibility and a growing arsenal of transcriptomic and genomic resources. Applying this tool box to the study of allometry has begun to add critical new pathways as well as possible pathway interactions to our understanding of the mechanistic basis of scaling regulation and its evolution across a range of phylogenetic distances (Figure 3a). In particular, the discovery that Dsx and Hh signaling interact to enable the development of alternate male morphs separated by a sharp body size threshold constitutes a significant advancement in our understanding of the biological basis and evolutionary origins of complex allometries. Conversely, even though IIS has been a focal pathway for much research into the regulation of scaling over the past decade, research in Onthophagus is contributing to a better understanding of the surprising evolutionary lability of this pathway and its role in differentially regulating nutrition-responsive growth in different traits, sexes, and species. Lastly, serotonin signaling is emerging as an unexpected yet possibly critical regulator of size thresholds and their diversification (Figure 3b).

Taken together, these new discoveries open up critical new opportunities for future research. For example, exactly how and under what conditions Dsx, Hh, insulin, and serotonin signaling interact remains largely unknown for most traits and species, yet is likely critical for understanding how the same nutritional gradient can be transduced into disparate growth responses by different body parts of the same individual, and how these interactions - and the allometries they give rise to - might diversify across species. Similarly, we have barely begun to explore the roles played by these pathways in possibly co-regulating morphological and behavioral development, yet doing so may provide critical insights into how divergent social conditions, e.g. those encountered in newly colonized environments, may drive subsequent, rapid allometric divergences [50]. Such an effort would be especially opportune with respect to serotonin signaling given its well established role as a modulator of behavior on one side [45], and the critical interdependencies of alternative male morphologies and reproductive tactics in horned beetles on the other [51]. Given their allometric diversity and experimental accessibility, Onthophagus
beetles are ideally positioned to help address these and related questions in coming years.

Acknowledgements

We would like to thank the editors for the opportunity to contribute this review and two anonymous reviewers for constructive feedback. Research on Onthophagus beetles reviewed here was supported by National Science Foundation grants IOS 1236609 and IOS 1129299 to AP.

References

Developmental regulation and evolution of scaling Casasa, Schwab and Moczek 59

28. Kijimoto et al. present the first study that simultaneously assesses the relative contributions of sex, body region, and nutrition to transcriptional variation during development, focusing on the beetle Onthophagus taurus. Focusing on nutrition-responsive gene expression they observe that magnitude (measured by number of differentially expressed contigs), composition (measured by functional enrichment), and evolutionary consequences (measured by patterns of sequence variation) of nutrition responsive gene expression are heavily dependent on exactly which body region is considered and the degree of sexual dimorphism observed on a morphological level.

42. Provides an excellent review of serotonin signaling in insects with reference to vertebrates, focusing on serotonin, its biosynthesis and receptors, as well as tools for pharmacological manipulations.

